# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 2-[3-(2-Methylbenzoyl)thioureido]-3-phenylpropionic acid

# M. Sukeri M. Yusof,<sup>a</sup> Zurina A. Aziz,<sup>a</sup> Maisara A. Kadir<sup>a</sup>\* and Bohari M. Yamin<sup>b</sup>

<sup>a</sup>Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and <sup>b</sup>School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Correspondence e-mail: maisara@umt.edu.my

Received 26 July 2007; accepted 27 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.096; data-to-parameter ratio = 15.4.

In the title compound,  $C_{18}H_{18}N_2O_3S$ , the central thiourea and 2-methylphenyl fragments make a dihedral angle of 55.40 (7)°. In the crystal structure, molecules are stabilized by intermolecular  $O-H\cdots S$ ,  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds, forming a one-dimensional chain along the *a* axis.

#### **Related literature**

For structures analogous to the title compound, see: Ngah *et al.* (2005). For details of the normal bond lengths and angles found in the title compound, see: Allen *et al.* (1987).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} C_{18}H_{18}N_2O_3S\\ M_r = 342.40\\ Orthorhombic, \ P2_12_12_1\\ a = 7.4377\ (16)\ \text{\AA}\\ b = 24.554\ (5)\ \text{\AA}\\ c = 9.385\ (2)\ \text{\AA} \end{array}$ 

 $V = 1713.9 \text{ (6) } \text{\AA}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 0.21 \text{ mm}^{-1}$  T = 293 (2) K $0.50 \times 0.38 \times 0.29 \text{ mm}$ 

#### Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000)  $T_{min} = 0.904, T_{max} = 0.942$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$   $wR(F^2) = 0.096$  S = 0.983339 reflections 217 parameters H-atom parameters constrained 9565 measured reflections 3339 independent reflections 3111 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.018$ 

 $\begin{array}{l} \Delta \rho_{max} = 0.20 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.14 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1396 \mbox{ Freidel pairs} \\ \mbox{ Flack parameter: } 0.08 (7) \end{array}$ 

# Table 1 Hydrogen-bond geometry (Å, $^{\circ}$ ).

|                             |      | /            |              |                                      |
|-----------------------------|------|--------------|--------------|--------------------------------------|
| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| $N2-H2A\cdots O1$           | 0.86 | 1.95         | 2.636 (2)    | 135                                  |
| $C9-H9A\cdots S1$           | 0.98 | 2.60         | 3.091 (2)    | 111                                  |
| C20−H20B···O1               | 0.96 | 2.54         | 2.994 (3)    | 109                                  |
| $C1 - H1B \cdots O2^{i}$    | 0.93 | 2.50         | 3.187 (3)    | 130                                  |
| $C2-H2B\cdots O1^{i}$       | 0.93 | 2.50         | 3.409 (3)    | 165                                  |
| $N1 - H1A \cdots O2^{i}$    | 0.86 | 2.46         | 3.237 (2)    | 150                                  |
| O3−H3···S1 <sup>ii</sup>    | 0.80 | 2.34         | 3.1361 (17)  | 177                                  |
| $C9-H9A\cdots O2^{iii}$     | 0.98 | 2.58         | 3.338 (2)    | 134                                  |
|                             |      |              |              |                                      |

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii)  $-x + \frac{1}{2}$ , -y + 2,  $z + \frac{1}{2}$ .

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia and Universiti Malaysia Terengganu for research grants (IRPA Nos. 09-02-02-993) and the Ministry of Higher Education Malaysia for FRGS grants (No. 59005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2353).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Ngah, N., Jusoh, A. & Yamin, B. M. (2005). Acta Cryst. E61, o4307-o4309.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o3676 [doi:10.1107/S160053680703680X]

## 2-[3-(2-Methylbenzoyl)thioureido]-3-phenylpropionic acid

## M. S. M. Yusof, Z. A. Aziz, M. A. Kadir and B. M. Yamin

#### Comment

The title compound, (I), is an amino acids derivative of thiourea and analoguos with 2-[3-(4-methoxybenzoyl))thioureido-3-phenylpropionic acid methanol solvate, (II), (Ngah *et al.*, 2005), except that the position of methyl group at the phenyl ring (Fig.1). The molecule maintains its *trans-cis* configuration with respect to the positions of 2-methylbenzoyl and 3phenylpropionic acid relative to the S1 atom across the C8—N1 and C8—N2 bonds, respectively. The bond lengths and angles are in normal ranges (Allen *et al.*, 1987) and are comparable to those in (II). The central thiourea (S1/N1/N2/C8), 2-methylphenyl (C1–C6/C20) and phenyl ring (C11–C16) fragments are essentially planar with a maximum deviation of 0.041 (2) Å for atom C7 from the least square planes. The dihedral angles between the central thiourea and 2-methylphenyl fragments is 55.40 (7)°.

There are three intramolecular N—H···O, C—H···S and C—H···O hydrogen bonds, (Table 2), and as a result, a pseudo-five-  $(S1 \cdots H9 - C9 - N2 - C8 - S1)$  and two pseudo-six membered rings  $(O1 \cdots H2 - N2 - C8 - N1 - C7 - O1)$ ,  $(O1 \cdots H20 - C20 - C5 - C6 - C7 - O1)$  are formed. In the crystal structure the molecules are stabilized by intermolecular O—H···S, N—H···O and C—H···O hydrogen bonds, (Table 2), forming a one-dimensional chain along to *a* axis (Fig.2).

### Experimental

A solution of *L*-phenylalanine in acetone was added dropwise to a two-necked round-bottomed flask containing an equimolar solution of 2-methylbenzoyl isothiocyanate in distilled acetone. The mixture was refluxed for about 5 h to complete the reaction. The resulting solution was poured into a beaker containing some ice cubes. The white precipitate obtained was filtered and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals of (I) were obtained by recrystallization from methanol (yield 81%, m.p. 385.2-386.4 K).

#### Refinement

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C, N or O atoms with C—H = 0.93–0.97 Å, N—H = 0.86Å and O—H = 0.80 Å, with  $U_{iso}(H)$ = 1.2Ueq(C, N) and 1.5Ueq (C<sub>methyl</sub>, O<sub>hydroxyl</sub>).

#### **Figures**



Fig. 1. Molecular structure of the title compound (I), with the 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bonds.



Fig. 2. Packing diagram of compound (I), viewed down the *b* axis. The dashed lines denote the intermolecular N—H···O, O—H···S and C—H···O hydrogen bonds.

### 2-[3-(2-Methylbenzoyl)thioureido]-3-phenylpropionic acid

| Crystal data                  |                                                 |
|-------------------------------|-------------------------------------------------|
| $C_{18}H_{18}N_2O_3S$         | $F_{000} = 720$                                 |
| $M_r = 342.40$                | $D_{\rm x} = 1.327 {\rm ~Mg~m}^{-3}$            |
| Orthorhombic, $P2_12_12_1$    | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab        | Cell parameters from 947 reflections            |
| <i>a</i> = 7.4377 (16) Å      | $\theta = 1.6 - 25.9^{\circ}$                   |
| b = 24.554 (5)  Å             | $\mu = 0.21 \text{ mm}^{-1}$                    |
| c = 9.385 (2) Å               | T = 293 (2)  K                                  |
| V = 1713.9 (6) Å <sup>3</sup> | Block, colourless                               |
| Z = 4                         | $0.50\times0.38\times0.29~mm$                   |
|                               |                                                 |

### Data collection

| Bruker SMART APEX CCD area-detector diffractometer          | 3339 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 3111 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.018$                  |
| Detector resolution: 83.66 pixels mm <sup>-1</sup>          | $\theta_{\text{max}} = 25.9^{\circ}$   |
| T = 293(2)  K                                               | $\theta_{\min} = 1.6^{\circ}$          |
| ω scans                                                     | $h = -8 \rightarrow 9$                 |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2000) | $k = -30 \rightarrow 23$               |
| $T_{\min} = 0.904, \ T_{\max} = 0.942$                      | $l = -11 \rightarrow 11$               |
| 9565 measured reflections                                   |                                        |

### Refinement

Refinement on  $F^2$ Hydrogen site location: inferred from neighbouring<br/>sitesLeast-squares matrix: fullH-atom parameters constrained<br/> $w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 0.1974P]$ <br/>where  $P = (F_o^2 + 2F_c^2)/3$ <br/> $wR(F^2) = 0.096$  $(\Delta/\sigma)_{max} < 0.001$ 

| S = 0.98                                                       | $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$  |
|----------------------------------------------------------------|------------------------------------------------------------|
| 3339 reflections                                               | $\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$ |
| 217 parameters                                                 | Extinction correction: none                                |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1396 Freidel pairs       |
| Secondary atom site location: difference Fourier map           | Flack parameter: 0.08 (7)                                  |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | у             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|---------------|--------------|---------------------------|
| S1   | -0.13853 (7)  | 1.026957 (19) | 1.05397 (6)  | 0.05106 (16)              |
| N1   | -0.18460 (19) | 0.93256 (6)   | 0.92189 (17) | 0.0384 (3)                |
| H1A  | -0.2862       | 0.9468        | 0.8991       | 0.046*                    |
| 01   | -0.00976 (19) | 0.85763 (6)   | 0.89046 (16) | 0.0540 (4)                |
| C8   | -0.0772 (2)   | 0.96311 (7)   | 1.01294 (19) | 0.0381 (4)                |
| O2   | 0.4010 (2)    | 0.96999 (6)   | 0.96043 (15) | 0.0516 (3)                |
| N2   | 0.0706 (2)    | 0.93940 (6)   | 1.06088 (19) | 0.0452 (4)                |
| H2A  | 0.0935        | 0.9069        | 1.0317       | 0.054*                    |
| C17  | 0.3630 (3)    | 0.98307 (7)   | 1.0794 (2)   | 0.0423 (4)                |
| C7   | -0.1486 (3)   | 0.88225 (7)   | 0.86356 (19) | 0.0387 (4)                |
| C5   | -0.2457 (3)   | 0.83614 (8)   | 0.6372 (2)   | 0.0422 (4)                |
| O3   | 0.4643 (2)    | 1.01424 (7)   | 1.16113 (17) | 0.0622 (4)                |
| C1   | -0.4677 (3)   | 0.85934 (8)   | 0.8167 (2)   | 0.0456 (4)                |
| H1B  | -0.4959       | 0.8754        | 0.9036       | 0.055*                    |
| C6   | -0.2909 (3)   | 0.85943 (7)   | 0.76887 (19) | 0.0373 (4)                |
| C9   | 0.1965 (3)    | 0.96422 (8)   | 1.1589 (2)   | 0.0448 (5)                |
| H9A  | 0.1388        | 0.9961        | 1.2021       | 0.054*                    |
| C11  | 0.3542 (4)    | 0.87540 (8)   | 1.2309 (2)   | 0.0520 (5)                |
| C4   | -0.3840 (3)   | 0.81296 (9)   | 0.5593 (2)   | 0.0531 (5)                |
| H4A  | -0.3579       | 0.7974        | 0.4714       | 0.064*                    |
| C10  | 0.2496 (3)    | 0.92471 (9)   | 1.2782 (2)   | 0.0526 (5)                |
| H10A | 0.3209        | 0.9444        | 1.3477       | 0.063*                    |
| H10B | 0.1410        | 0.9125        | 1.3256       | 0.063*                    |
| C2   | -0.6009 (3)   | 0.83567 (10)  | 0.7367 (3)   | 0.0588 (6)                |
| H2B  | -0.7188       | 0.8355        | 0.7695       | 0.071*                    |
| C3   | -0.5594 (3)   | 0.81220 (10)  | 0.6076 (3)   | 0.0625 (6)                |
|      |               |               |              |                           |

# supplementary materials

| H3A  | -0.6490     | 0.7959       | 0.5532     | 0.075*      |
|------|-------------|--------------|------------|-------------|
| C20  | -0.0583 (3) | 0.83576 (10) | 0.5790 (2) | 0.0613 (6)  |
| H20A | -0.0576     | 0.8179       | 0.4879     | 0.092*      |
| H20B | 0.0194      | 0.8166       | 0.6434     | 0.092*      |
| H20C | -0.0166     | 0.8725       | 0.5682     | 0.092*      |
| C16  | 0.5398 (4)  | 0.87715 (10) | 1.2231 (2) | 0.0615 (6)  |
| H16A | 0.6000      | 0.9090       | 1.2477     | 0.074*      |
| C12  | 0.2681 (5)  | 0.82709 (10) | 1.1949 (3) | 0.0745 (8)  |
| H12A | 0.1435      | 0.8249       | 1.2002     | 0.089*      |
| C13  | 0.3668 (7)  | 0.78194 (11) | 1.1511 (3) | 0.1000 (12) |
| H13A | 0.3081      | 0.7499       | 1.1262     | 0.120*      |
| C14  | 0.5507 (7)  | 0.78483 (14) | 1.1446 (3) | 0.1008 (13) |
| H14A | 0.6165      | 0.7545       | 1.1166     | 0.121*      |
| C15  | 0.6375 (5)  | 0.83178 (13) | 1.1789 (3) | 0.0850 (9)  |
| H15B | 0.7622      | 0.8336       | 1.1728     | 0.102*      |
| Н3   | 0.5643      | 1.0178       | 1.1310     | 0.128*      |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0447 (3)  | 0.0341 (2)  | 0.0744 (3)  | -0.0009(2)   | -0.0013 (2)  | -0.0124 (2)  |
| N1  | 0.0348 (8)  | 0.0341 (7)  | 0.0461 (8)  | -0.0001 (6)  | -0.0029 (6)  | -0.0047 (6)  |
| 01  | 0.0457 (8)  | 0.0498 (8)  | 0.0665 (9)  | 0.0125 (7)   | -0.0129 (7)  | -0.0214 (7)  |
| C8  | 0.0340 (9)  | 0.0383 (9)  | 0.0420 (9)  | -0.0040 (7)  | 0.0056 (7)   | -0.0040 (7)  |
| 02  | 0.0557 (9)  | 0.0550 (8)  | 0.0440 (7)  | -0.0029 (7)  | -0.0019 (6)  | -0.0021 (6)  |
| N2  | 0.0394 (8)  | 0.0415 (8)  | 0.0546 (9)  | 0.0034 (6)   | -0.0058 (8)  | -0.0165 (7)  |
| C17 | 0.0452 (10) | 0.0340 (9)  | 0.0478 (10) | 0.0043 (8)   | -0.0074 (9)  | -0.0035 (8)  |
| C7  | 0.0391 (10) | 0.0390 (9)  | 0.0380 (8)  | 0.0006 (8)   | 0.0030 (8)   | -0.0044 (7)  |
| C5  | 0.0486 (11) | 0.0396 (9)  | 0.0382 (9)  | 0.0017 (8)   | -0.0021 (8)  | 0.0010 (8)   |
| 03  | 0.0520 (9)  | 0.0669 (10) | 0.0677 (9)  | -0.0151 (7)  | -0.0005 (8)  | -0.0245 (8)  |
| C1  | 0.0429 (11) | 0.0488 (11) | 0.0452 (10) | -0.0003 (8)  | 0.0022 (8)   | -0.0066 (8)  |
| C6  | 0.0429 (10) | 0.0309 (8)  | 0.0381 (9)  | 0.0005 (7)   | -0.0031 (7)  | -0.0012 (7)  |
| C9  | 0.0405 (10) | 0.0455 (11) | 0.0485 (10) | 0.0016 (8)   | -0.0031 (8)  | -0.0161 (8)  |
| C11 | 0.0739 (15) | 0.0472 (10) | 0.0349 (9)  | -0.0004 (10) | -0.0011 (10) | 0.0051 (8)   |
| C4  | 0.0633 (14) | 0.0558 (11) | 0.0401 (10) | -0.0019 (10) | -0.0063 (10) | -0.0105 (9)  |
| C10 | 0.0519 (12) | 0.0644 (13) | 0.0414 (10) | -0.0060 (10) | 0.0045 (9)   | -0.0080 (9)  |
| C2  | 0.0372 (12) | 0.0717 (14) | 0.0677 (13) | -0.0046 (10) | -0.0002 (10) | -0.0099 (12) |
| C3  | 0.0528 (13) | 0.0717 (15) | 0.0631 (14) | -0.0060 (11) | -0.0179 (11) | -0.0163 (11) |
| C20 | 0.0571 (13) | 0.0737 (14) | 0.0530 (12) | -0.0055 (11) | 0.0107 (11)  | -0.0135 (11) |
| C16 | 0.0757 (17) | 0.0606 (14) | 0.0482 (11) | 0.0121 (12)  | -0.0019 (11) | 0.0065 (10)  |
| C12 | 0.109 (2)   | 0.0534 (15) | 0.0612 (15) | -0.0117 (14) | -0.0116 (15) | 0.0098 (12)  |
| C13 | 0.186 (4)   | 0.0415 (14) | 0.0725 (18) | -0.001 (2)   | -0.017 (3)   | 0.0040 (12)  |
| C14 | 0.179 (4)   | 0.0629 (19) | 0.0608 (16) | 0.046 (2)    | 0.006 (2)    | 0.0088 (14)  |
| C15 | 0.106 (2)   | 0.089 (2)   | 0.0592 (15) | 0.041 (2)    | 0.0097 (16)  | 0.0165 (15)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| S1—C8 | 1.6775 (18) | C11—C12 | 1.389 (3) |
|-------|-------------|---------|-----------|
| N1—C7 | 1.377 (2)   | C11—C10 | 1.506 (3) |

| N1—C8      | 1.390 (2)   | C4—C3         | 1.381 (3)   |
|------------|-------------|---------------|-------------|
| N1—H1A     | 0.8600      | C4—H4A        | 0.9300      |
| O1—C7      | 1.223 (2)   | C10—H10A      | 0.9700      |
| C8—N2      | 1.323 (3)   | C10—H10B      | 0.9700      |
| O2—C17     | 1.196 (2)   | С2—С3         | 1.377 (3)   |
| N2—C9      | 1.447 (2)   | C2—H2B        | 0.9300      |
| N2—H2A     | 0.8600      | С3—НЗА        | 0.9300      |
| C17—O3     | 1.320 (2)   | C20—H20A      | 0.9600      |
| O3—H3      | 0.8000      | C20—H20B      | 0.9600      |
| С17—С9     | 1.518 (3)   | C20—H20C      | 0.9600      |
| С7—С6      | 1.491 (3)   | C16—C15       | 1.393 (4)   |
| C5—C4      | 1.385 (3)   | C16—H16A      | 0.9300      |
| C5—C6      | 1.402 (3)   | C12—C13       | 1.392 (5)   |
| C5—C20     | 1.497 (3)   | C12—H12A      | 0.9300      |
| C1—C2      | 1.372 (3)   | C13—C14       | 1.370 (5)   |
| C1—C6      | 1.389 (3)   | C13—H13A      | 0.9300      |
| C1—H1B     | 0.9300      | C14—C15       | 1.360 (5)   |
| C9—C10     | 1.533 (3)   | C14—H14A      | 0.9300      |
| С9—Н9А     | 0.9800      | C15—H15B      | 0.9300      |
| C11—C16    | 1.383 (4)   |               |             |
| С17—О3—Н3  | 113.00      | С5—С4—Н4А     | 118.9       |
| C7—N1—C8   | 128.09 (16) | C11—C10—C9    | 115.26 (16) |
| C7—N1—H1A  | 116.0       | C11—C10—H10A  | 108.5       |
| C8—N1—H1A  | 116.0       | С9—С10—Н10А   | 108.5       |
| N2—C8—N1   | 116.69 (16) | C11—C10—H10B  | 108.5       |
| N2—C8—S1   | 124.00 (14) | С9—С10—Н10В   | 108.5       |
| N1—C8—S1   | 119.31 (14) | H10A—C10—H10B | 107.5       |
| C8—N2—C9   | 124.64 (15) | C1—C2—C3      | 119.8 (2)   |
| C8—N2—H2A  | 117.7       | C1—C2—H2B     | 120.1       |
| C9—N2—H2A  | 117.7       | С3—С2—Н2В     | 120.1       |
| O2—C17—O3  | 124.3 (2)   | C2—C3—C4      | 119.7 (2)   |
| O2—C17—C9  | 124.73 (17) | С2—С3—НЗА     | 120.2       |
| O3—C17—C9  | 110.95 (16) | С4—С3—НЗА     | 120.2       |
| O1—C7—N1   | 121.69 (17) | C5-C20-H20A   | 109.5       |
| O1—C7—C6   | 122.44 (16) | С5—С20—Н20В   | 109.5       |
| N1—C7—C6   | 115.85 (16) | H20A—C20—H20B | 109.5       |
| C4—C5—C6   | 117.07 (19) | С5—С20—Н20С   | 109.5       |
| C4—C5—C20  | 119.74 (18) | H20A—C20—H20C | 109.5       |
| C6—C5—C20  | 123.18 (18) | H20B-C20-H20C | 109.5       |
| C2—C1—C6   | 120.47 (19) | C11—C16—C15   | 120.8 (3)   |
| C2—C1—H1B  | 119.8       | C11—C16—H16A  | 119.6       |
| C6—C1—H1B  | 119.8       | C15—C16—H16A  | 119.6       |
| C1—C6—C5   | 120.71 (18) | C11—C12—C13   | 120.6 (3)   |
| C1—C6—C7   | 118.66 (16) | C11—C12—H12A  | 119.7       |
| C5—C6—C7   | 120.56 (17) | C13—C12—H12A  | 119.7       |
| N2         | 110.12 (16) | C14—C13—C12   | 119.9 (3)   |
| N2—C9—C10  | 111.37 (17) | C14—C13—H13A  | 120.1       |
| C17—C9—C10 | 109.96 (16) | С12—С13—Н13А  | 120.1       |
| N2—C9—H9A  | 108.4       | C15—C14—C13   | 120.5 (3)   |

# supplementary materials

| С17—С9—Н9А   | 108.4        | C15-C14-H14A    | 119.8      |
|--------------|--------------|-----------------|------------|
| С10—С9—Н9А   | 108.4        | C13—C14—H14A    | 119.8      |
| C16—C11—C12  | 118.3 (2)    | C14—C15—C16     | 120.0 (4)  |
| C16—C11—C10  | 120.4 (2)    | C14—C15—H15B    | 120.0      |
| C12-C11-C10  | 121.3 (3)    | C16—C15—H15B    | 120.0      |
| C3—C4—C5     | 122.27 (19)  | С14—С15—Н3      | 139.4      |
| C3—C4—H4A    | 118.9        | H15B—C15—H3     | 93.7       |
| C7—N1—C8—N2  | -6.9 (3)     | O2—C17—C9—C10   | 109.4 (2)  |
| C7—N1—C8—S1  | 172.36 (15)  | O3—C17—C9—C10   | -68.2 (2)  |
| N1—C8—N2—C9  | -178.50 (18) | C6—C5—C4—C3     | -0.3 (3)   |
| S1—C8—N2—C9  | 2.3 (3)      | C20—C5—C4—C3    | -179.9 (2) |
| C8—N1—C7—O1  | 1.3 (3)      | C16-C11-C10-C9  | 88.8 (2)   |
| C8—N1—C7—C6  | 179.99 (17)  | C12-C11-C10-C9  | -91.7 (2)  |
| C2—C1—C6—C5  | 1.0 (3)      | N2-C9-C10-C11   | 65.7 (2)   |
| C2-C1-C6-C7  | -175.9 (2)   | C17—C9—C10—C11  | -56.7 (2)  |
| C4—C5—C6—C1  | -0.6 (3)     | C6—C1—C2—C3     | -0.5 (3)   |
| C20-C5-C6-C1 | 179.0 (2)    | C1—C2—C3—C4     | -0.4 (4)   |
| C4—C5—C6—C7  | 176.29 (17)  | C5—C4—C3—C2     | 0.8 (4)    |
| C20-C5-C6-C7 | -4.1 (3)     | C12-C11-C16-C15 | 0.7 (3)    |
| O1—C7—C6—C1  | 129.8 (2)    | C10-C11-C16-C15 | -179.7 (2) |
| N1—C7—C6—C1  | -48.8 (2)    | C16-C11-C12-C13 | -0.6 (4)   |
| O1—C7—C6—C5  | -47.1 (3)    | C10-C11-C12-C13 | 179.8 (2)  |
| N1-C7-C6-C5  | 134.26 (18)  | C11-C12-C13-C14 | 0.7 (4)    |
| C8—N2—C9—C17 | -103.6 (2)   | C12-C13-C14-C15 | -0.9 (5)   |
| C8—N2—C9—C10 | 134.17 (19)  | C13-C14-C15-C16 | 1.0 (5)    |
| O2—C17—C9—N2 | -13.7 (3)    | C11-C16-C15-C14 | -0.9 (4)   |
| O3—C17—C9—N2 | 168.75 (16)  |                 |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!\!- \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|----------------------------|-------------|--------------|--------------|----------------------------------------------------------------------------|
| N2—H2A···O1                | 0.86        | 1.95         | 2.636 (2)    | 135                                                                        |
| C9—H9A…S1                  | 0.98        | 2.60         | 3.091 (2)    | 111                                                                        |
| C20—H20B…O1                | 0.96        | 2.54         | 2.994 (3)    | 109                                                                        |
| C1—H1B···O2 <sup>i</sup>   | 0.93        | 2.50         | 3.187 (3)    | 130                                                                        |
| C2—H2B···O1 <sup>i</sup>   | 0.93        | 2.50         | 3.409 (3)    | 165                                                                        |
| N1—H1A····O2 <sup>i</sup>  | 0.86        | 2.46         | 3.237 (2)    | 150                                                                        |
| O3—H3···S1 <sup>ii</sup>   | 0.80        | 2.34         | 3.1361 (17)  | 177                                                                        |
| C9—H9A···O2 <sup>iii</sup> | 0.98        | 2.58         | 3.338 (2)    | 134                                                                        |

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x+1/2, -y+2, z+1/2.





